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We demonstrate for the six vertex and XXZ model parameterized by D=
−(q+q−1)/2 ] ± 1 that when q2N=1 for integer N \ 2 the Bethe’s ansatz

equations determine only the eigenvectors which are the highest weights of the

infinite dimensional sl2 loop algebra symmetry group of the model. Therefore in
this case the Bethe’s ansatz equations are incomplete and further conditions

need to be imposed in order to completely specify the wave function. We discuss

how the evaluation parameters of the finite dimensional representations of the

sl2 loop algebra can be used to complete this specification.
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I. INTRODUCTION

The study of the eigenvectors and eigenvalues of the Hamiltonian of

the XXZ chain with periodic boundary conditions specified by

H=−1
2 C

L
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where s ij is the i Pauli spin matrix at site j was initiated by Bethe (1) for the
case D= ± 1 in 1931 and has been studied (2–5) for D ] ± 1 since 1958. A

major result of these studies is that the ground state eigenvalue for any



value of Sz is determined by an appropriate solution of what is called

‘‘Bethe’s equation’’
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where we use

−D=cosc=1
2 (q+q−1), 0 [ c [ p (1.3)

Here

Sz=1
2 C

L

j=1
szj (1.4)

is a conserved quantum number since the operator in the right hand side

commutes with the Hamiltonian (1.1) The eigenvalues of (1.1) are

E=−
D

2
L−2 C

L/2−|Sz|

j=1
(cos pj−D) (1.5)

where

cos p=−cos c+
sin2 c

cosh v−cos c
(1.6)

The corresponding momentum P is obtained from

e iP= D
L/2−|Sz|

j=1

sinh 1
2 (ic+vj)

sinh 1
2 (ic−vj)

(1.7)

There are many solutions of (1.2) but it is a simple matter (5) to deter-

mine the particular solution that leads to the ground state. However the

derivation of the equations is not restricted to the ground state. Thus there

arises the question of whether or not the totality of solutions of the Bethe’s

equation (1.2) will give all eigenvalues of (1.1). This is referred to as the

completeness problem for the Bethe ansatz equation.

There is a large literature concerning this completeness problem (7–20)

and the closely related problems of classifying solutions of Bethe’s equation

in terms of the string hypothesis (21–23) and quartets, and wide and narrow

pairs. (24–26, 12, 13) As recently as ref. 20 it was stated that ‘‘it still remains to be

settled whether the Bethe ansatz produces the complete set of eigenstates.’’

However it is not always straightforward to interpret precisely what

has been done. For example in the special case of the XXX model (D=−1)
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it is shown in refs. 1, 8–10 that the sl(2) symmetry of the Hamiltonian
groups states in degenerate multiplets where, denoting by Sz

max the maxi-

mum value of Sz in the multiplet, there are 2Sz
max+1 states in the multiplet

with the same energy and momentum and with the values Sz=Sz
max,

Sz
max−1, ..., −Sz

max. These states are all given by Bethe’s equation as long as

multiple occupancy of the states with vj= ±. is allowed. On the other

hand as is pointed out in ref. 15 these computations are based on the string

hypothesis of ref. 21 and in refs. 25, 22, 27 it is demonstrated that there are

states of the XXX model where this hypothesis fails.

Another example is the study of completeness made in ref. 14 where it

is stated that when |D| < 1 the root of unity case

q2N=1 (1.8)

must be explicitly excluded for the completeness proof to hold because of

the occurrence of additional degeneracies. However, in ref. 17 this root of

unity case is precisely the case for which it is claimed that a combinatorial

completeness is proven on the basis of assuming a counting given by the

string hypothesis and in ref. 17 there is no explicit mention made of dege-

nerate multiplets mentioned in ref. 14.

The study of the degeneracies of the XXZ model at roots of unity

originates in the much more general studies of Baxter (28–30) on the XYZ

model and has been considered in the more special case of XXZ by several

authors. (31–36) Recently (37) it was shown in the root of unity case (1.8) that

the Hamiltonian (1.1) and the transfer matrix of the related six vertex

model (38–44) have the infinite dimensional sl2 loop algebra as a symmetry.
This infinite dimensional symmetry algebra groups eigenvalues into dege-

nerate multiplets whose consecutive values of Sz differ by N and as an

example when Sz — 0(mod N) the state with Sz=Sz
max−lN has the binomial

multiplicity (2S
z
max/N
l ). This sl2 loop algebra symmetry must also lead to con-

sequences for the solutions of the corresponding Bethe’s equation (1.2) but

unlike the XXX model with the finite symmetry algebra of sl(2) multiple
occupancy of vj= ±. does not explain this degeneracy. It is the primary

purpose of this paper to study the relation of the sl2 loop algebra symmetry
discovered in ref. 37 to the Bethe’s equation (1.2).

In order to efficiently study all the solutions of Bethe’s equation we

find it most useful to recall that (1.2) arises in Baxter’s functional equation

solution (45–46, 28–30) to the six vertex model where the (suitably normalized)

transfer matrix T(v) of the six vertex model satisfies

(−1)L/2−|Sz| T(v) Q(v)=sinhL 1
2 (v−ic) Q(v+2ic)+sinhL 1

2 (v+ic) Q(v−2ic)
(1.9)
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where T(v) is defined in terms of the Boltzmann weights W(m, n)|a, b with
m, n, a, b= ± 1 as

T(v)=Tr W(m1, n1) W(m2, n2) · · · W(mL, nL) (1.10)

where

W(1, 1)|1, 1=W(−1, −1)|−1, −1=sinh 1
2 (v+ic)

W(−1, −1)|1, 1=W(1, 1)|−1, −1=sinh 1
2 (v−ic) (1.11)

W(−1, 1)|1, −1=W(1, −1)|−1, 1=sinh ic

and Q(v) is the auxiliary matrix introduced by Baxter which satisfies

[T(v), Q(v)]=[Q(v), Q(vŒ)]=0. From these commutation relations and the

fundamental relation that [T(v), T(vŒ)]=0 it follows that the matrix equa-
tion (1.9) also holds for the eigenvalues of T(v) and Q(v). Therefore if we
write the eigenvalues of Q(v) in the product form

Q(v)= D
L/2−|Sz|

j=1
sinh 1

2 (v−vj) (1.12)

we find from (1.9) that the zeros vj are given by (1.2) as long as the simul-
taneous vanishing

Q(vj)=Q(vj+2ic)=Q(vj−2ic)=0 (1.13)

does not occur.

In general this is all which is known. However, in the special case

where Sz=0 Baxter in Eq. (101) of ref. 28 gives the following explicit

expression for the matrix Q(v) which is valid for all c

Q(v)|a, b=r exp 1
1
4 i(p−c) C

1 [ J < K [ L
(aJbK−aKbJ)+

1
4

(v−ip) C
L

J=1
aJbJ2
(1.14)

where aj, bj= ± 1 are the eigenvalues of szj at the site j, r is a suitable
normalizing constant and the restriction Sz=0 means that L is even and

that

a1+ · · · +aL=b1+ · · · +bL=0 (1.15)

The functional equation (1.9) and the exact expression (1.14) for Q
with Sz=0 will be the basis for most of our studies of the solutions vj of
Bethe’s equation (1.2).
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In order to make our statements precise we will first summarize in

Section 2 what is meant by the string hypothesis of refs. 21 and 23 and

formulate procedures for numerically determining the solutions vj of the
Bethe’s equation (1.2). In Section 3 we will study these numerical solutions

of (1.2) for the two values D=0, −1/2 and compare with the picture given
by the string hypothesis (21, 23) and the counting of ref. 17. For the case D=0
the complete solution was given long ago by Lieb, Schultz and Mattis. (47)

We will see that the vj which are obtained from the Bethe’s ansatz equation

(1.2) in the limit DQ0 and from the exact expression (1.14) for Q
with Sz=0 do not agree with the corresponding vj of ref. 47 whereas the
state counting results of ref. 17 do agree with ref. 47. Similarly for D=−1/2
the roots obtained from continuity and from the exact expression (1.14)

for Q with Sz=0 are also different from the string structure posited by

ref. 17.

It must be stressed, however, that even though the numerical results

we find for vj do not agree with the results of ref. 47 for D=0 our results do
not contradict this paper because the eigenvectors being discussed are

linear combinations of the Bethe states with degenerate eigenvalues which

we obtained by continuity. We explain this in detail in Section 4 and relate

this phenomenon to the picture obtained from the evaluation representa-

tion decomposition of the sl2 loop algebra. For the case D=0 we explicitly
compute these evaluation parameters using Jordan Wigner techniques. For

both D=0, −1/2 we present an empirical relation between the evaluation
parameters computed as roots of the associated Drinfeld polynomial and

some of the numerical solutions of Section 3.

We conclude by remarking that even though for the explicit roots

of unity with N=2, 3 presented in Section 3 the phenomenon of

quartets (24–26, 12, 13) does not happen we have in fact found many examples

for N \ 4 where quartet states are present. The existence of these non-

string states has nothing to do with the degeneracies resulting from the sl2
loop algebra of ref. 37 and therefore we have not extended our examples to

cases with N \ 4. However these quartets are most interesting in their own
right and for that reason we will discuss them separately elsewhere.

II. FORMULATION

In this section we make precise what is meant by the string hypothesis

and we outline the procedure we will use to numerically study the roots vj
of the Bethe’s equation (1.2).
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A. The String Hypothesis

The detailed study of the solutions of the Bethe’s equation (1.2) was

begun in 1972 in ref. 21 where it is hypothesized that in the limit LQ. the

roots vj form complexes of n values where the imaginary parts are either

Iv=3
(n+1−2k) c mod 2p

(n+1−2k) c+p mod 2p
(2.1)

with k=1, 2, ..., n. In other words as LQ. the roots of (1.2) are of the

form (Eq. (2.9) of ref. 21)

vj, k=3
v r
j+(n+1−2k) ic+O(exp(−dL)) mod 2p

v r
j+(n+1−2k) ic+pi+O(exp(−dL)) mod 2p

(2.2)

where d> 0, v r
j is real and k=1, 2, ..., n. The first type of solution is called

an n string of positive parity (denoted as (n+)) and the second type of

solution is called an n string of negative parity (denoted by (n−)).
The form of solution (2.2) is universally referred to as the string

hypothesis although some authors include the term O(exp(−dL)) only

implicitly. It is mandatory that these terms are included for all n \ 2
because if they are not the right hand side of (1.2) will contain explicit

factors of zero or infinity.

The next question which arises is which values of n are allowed for a
given value of c. For an irrational value of c/p an infinite number of values
of n are allowed when LQ.. However for the values c=mp/N (when the

root of unity condition q2N=1 holds) the maximum value of n determined
by the formalism of Eqs. (2.12)–(2.14) of ref. 21 is nmax=N−1.

For the purposes of this paper we will restrict our attention to the

special case c=p/N. Then the formalism of ref. 21 gives the following

allowed states of strings: (1,+), (2,+), ..., (N−1,+) and (1, −).
There are several assumptions which have been tacitly made in these

derivations which should be made explicit.

First of all there is the assumption which is sometimes made that all

the real parts v r
j in (2.2) should be finite. However, examples of infinite

roots are known for both the XXX and XXZ models (see for example

ref. 18) and for the XXX model these infinite roots are connected with the

sl(2) multiplet structure of the degeneracies. These infinite roots mean only
that the number of finite roots is less than the assumed value of L

2 −|Sz|
which appears in (1.2). We do not make this assumption of finiteness of v r

j
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in our definition of string state and thus these ‘‘singular solutions’’ do not

violate our form of the hypothesis.

There is a more serious problem, however, which first seems to have

been made explicit in 1973 by Baxter (p. 54 of ref. 30) who realized that

the picture given above for c=mp/N is not complete and that strings of

length N must also be allowed. We call these strings complete N strings.

There is no restriction on parity for these strings. Therefore in the special

case c=p/N the meaning of the string hypothesis as taken from ref. 23 is

that the form for the roots is (2.2) and the allowed string length are

(1,+), ..., (N,+), (1, −), (N, −). We note, however, that implicitly certain
complete N strings are contained in the combinatorial completeness argu-

ments of ref. 17 because this counting contains composite states consisting

of an (N−1,+) string and a (1, −) string and for N \ 3 this composite

state will in fact be a complete N string if the real parts of (N−1,+) and
(1, −) are equal.

There is however, a very important feature of these complete N strings

of ref. 30 which sets them apart from all other strings of the form (2.2).

Namely, spacings of the N different imaginary parts of the complete N
strings are exactly given by 2c for finite L. This feature is not present for all
of the other strings and we will thus refer to these N strings as ‘‘exact

complete N strings.’’

From (1.5) we see that the contribution of an exact complete N string

to the energy is zero (independent of L). In other words the eigenstates of
the Hamiltonian which differ only by exact complete N strings are degen-

erate in energy. This is exactly the degeneracy which arises from the sl2
loop symmetry algebra found in ref. 37. From (1.7) we find the contribu-

tion to the momentum of the exact complete N string with c=pm/N

P=3
0 if N−m is even

p if N−m is odd
(2.3)

The feature of the exact spacing of the imaginary parts of the roots of

the exact complete N strings has the dramatic effect that there are now

terms in the Bethe’s equation (1.2) which are of the form 0/0 and therefore
there is no equation left to determine the real part. Moreover, there is no

equation to guarantee that v r
j need be real if there is a state which contains

two or more exact complete N strings.

B. Exact Complete N Strings in Baxter’s Q

The meaning and the necessity of exact complete N strings comes from

the sl2 loop algebra symmetry and is easily seen when Baxter’s matrix
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functional equation (1.9) is written in terms of the eigenvalues of T(v) and
Q(v). When the root of unity condition q2N=1 holds the transfer matrix

has degenerate eigenvalues. But on the other hand the matrix Q(v) does not
have degenerate eigenvalues. Therefore the only way for the functional

equation (1.9) to hold for the degenerate eigenvalues of T(v) with several
distinct polynomials Q(v) is for Q(v) to contain factors of the exact

complete N string

QN(v)=D
N

j=1
sinh 1

2 (v−a−2jic) (2.4)

These factors obey QN(v)=QN(v+2ic) and hence the simultaneous vanish-
ing condition (1.13). Therefore we conclude when the root of unity condi-

tion (1.8) holds that the functional equation (1.9) is not sufficient to

determine the parameter a in the exact complete N strings (2.4) which exist

if L is sufficiently large. Indeed the functional equation does not by itself

even guarantee that the imaginary part of a is either 0 or p.

C. Solution by Continuity

For any fixed L any deviation of q from q2N=1 will break all the

degeneracies of the eigenvalues of T(v) and now there will be a one-to-one

relation between the eigenvalues of T(v) and Q(v). Therefore one way to
determine the values of a in the exact complete N string of (2.4) is by con-

tinuity from the nondegenerate case. This will give a limiting set of solu-

tions of the Bethe’s ansatz equation at the roots of unity.

In principle for any given root of unity we can analytically determine a

set of limiting Bethe’s ansatz equations by continuity from (1.2) which

resolves the ambiguity of 0/0. However, here we will follow an alternative

numerical procedure which begins with the functional equation (1.9). Our

procedure is as follows. Because of the commutation relation [T(v), T(vŒ)]
=0 the eigenvectors of T(v) are independent of v and we may determine
them numerically on the computer by choosing any convenient value of v
we please. By letting T(v) act on these v independent numerical vectors we
may determine the eigenvalues as polynomials in ev of degree L on the

computer. We then determine the coefficients of the L
2 −|Sz| degree poly-

nomial for Q(v) by considering the functional equation (1.9) at L
2 −|Sz|+1

different values of the spectral parameter v and solving the resulting system
of homogeneous linear equations on the computer. As long as the eigen-
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values of T(v) are non degenerate this procedure is unique and unam-

biguous. The zeroes vj of the eigenvalues of Q(v) are then easily found by
finding the roots of the L

2 −|Sz| order polynomials on the computer. The
limit of DQ0 and DQ ± 1/2 is then obtained by studying sequences of D
which approach the root of unity under consideration. Of course in prac-

tice there is an optimum value of D such that if we come closer to the root

of unity than this value the accuracy of the computation will deteriorate.

Fortunately for the cases considered in this paper this necessary limitation

does not interfere with our ability to see the qualitative features of the

limiting case.

This method of continuity can be done for any value of Sz. The vali-

dity of this approach to the limit is then checked for the special case Sz=0
by numerically diagonalizing the matrix (1.14) exactly at D=0 (c=p/2) and
D=−1

2 (c=p/3).

III. NUMERICAL STUDIES FOR L=16

In this section we use the procedure outlined above to study the con-

tinuous solution to Bethe’s equation (1.2) at D=0 and D=−1/2. The two
cases are presented separately.

A. D=0 (c=p/2)

We have obtained the Bethe’s roots for all 216 eigenvalues of the L=16
chain from the Q of (1.14) at exactly D=0 for Sz=0 and by the limiting

procedure described above for all other values of Sz. The root content of

all eigenvalues without exception is described by (1,+), (1, −) strings,

exact complete 2 strings and infinite roots. The ground state contains only

(1,+) strings and its root content is given in Table 1.
The states are grouped into degenerate multiplets which have a highest

weight (in terms of Sz) which have only (1,+) and (1, −) roots in the

Table 1. Root Content for D=0

of the Ground State with

E=−10.251 · · · and P=0

−2.317785

−1.192878

−0.626402

−0.197623

0.197623

0.626402

1.192878

2.317786
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Table 2. Types of Degeneracies of the Transfer Matrix

T(u) for the Case D=0 and L=16

Maximum Sz=8, one type

Sz=8 multiplicity=1

6 8 one 2 string

4 28 two 2 strings

2 56 three 2 string

0 70 four 2 strings

−2 56 three 2 strings

−4 28 two 2 strings

−6 8 one 2 string

−8 1

Maximum Sz=7, one type

Sz=7 multiplicity=1

5 7 one 2 string

3 21 two 2 strings

1 35 three 2 strings

−1 21 two infinite roots, two 2 strings

−3 7 2 infinite roots, one 2 string

−5 1 2 infinite roots

Maximum Sz=6, one type

Sz=6 multiplicity=1

4 6 one 2 string

2 15 two 2 strings

0 20 three 2 strings

−2 15 two 2 strings

−4 6 one 2 string

−6 1

Maximum Sz=5 two types

Type 1

Sz=5 multiplicity=1

3 4 one 2 string

1 6 two 2 strings

−1 4 two infinite roots, 2 strings

−3 1 two infinite roots, one 2 string

Type 2

Sz=5 multiplicity=1 one infinite root

3 5 one infinite root, one 2 string

1 10 one infinite root, two 2 strings

−1 10 one infinite root, two 2 strings

−3 5 one infinite root, one 2 string

−5 1 one infinite root
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Table 2. (Continued)

Maximum Sz=4 one type

Sz=4 multiplicity=1

2 4 one 2 string

0 6 two 2 strings

−2 4 one 2 string

−4 1

Maximum Sz=3, two types

Sz=3 multiplicity=1

1 2 one 2 string

−1 1 two infinite roots

Sz=3 multiplicity=1 one infinite root,

1 3 one infinite root, one 2 string

−1 3 one infinite root, one 2 string

−3 1 one infinite root

Maximum Sz=2

Sz=2 multiplicity=1

0 2 one 2 string

−2 1

Maximum Sz=1 two types

Sz=1 multiplicity=1 (nondegenerate)

Sz=1 multiplicity=1 one infinite root

Sz=−1 multiplicity=1 one infinite root

Maximum Sz=0 one type

Sz=0 multiplicity=1 (nondegenerate)

sector Sz=0(mod 2) but which may also contain an infinite root for

Sz=1(mod 2). The highest weight states are not degenerate and are there-
fore identical with the states of ref. 47.

The remaining members of the multiplet contain exact complete 2

strings. The content of exact complete 2 strings and large roots for each

type of multiplet is given in Table 2.

In Table 3 we give examples of multiplets with one exact complete 2

string.
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Table 3. Examples of Multiplets with Sz=2, 0, −2 in L=16

and D=0 with One Exact Complete 2 String

E=−8.750 · · ·

Sz=2, P=18p/16

−1.192796

−0.626362

−0.197613

0.197606

0.626353

2.317550

Sz=0, P=2p/16

−1.192878 −1.192878

−0.626402 −0.626402

−0.197623 −0.197623

0.197623 0.197623

0.626402 0.626402

2.317786 2.317786

−0.562453 +ip/2 −0.562453

−0.562453 −ip/2 −0.562453 +ip

E=−7.249 · · ·

Sz= ± 2, P=18p/16

−2.317555

−0.626359

−0.197613

0.197602

0.626344

2.317902 +ip

Sz=0, P=2p/16

−2.317786 −2.317786

−0.626402 −0.626402

−0.197623 −0.197623

0.197623 0.197623

0.626402 0.626402

2.317786 +ip 2.317786 +ip
0.0 0.0 +ip/2
0.0 +ip 0.0 −ip/2
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In Table 4 we consider multiplets with multiple exact complete 2

strings by considering the states whose highest weight is Sz=6 with

momentum 2p/16 in Sz=0, ± 4 and 18p/16 in Sz= ± 2, ± 6. There are
seven such multiplets with energies 0, ± .2986..., ± .72111..., ± .55197....
These multiplets have 6 states in Sz= ± 4, 15 states in Sz= ± 2 and 20

states in Sz=0. In Table 4 we give the root content of the state with

E=−.55197 in Sz=0 and Sz=2 as an illustration. In particular we note

that the following types of imaginary parts occur

1. 0 and p

2. ±p/2

3. Pairs of two strings with imaginary parts other than 0, ±p/2 and p.

In Fig. 1 we extend this by plotting the location of all Bethe’s roots of

all eigenvalues in the sector Sz=0. In this plot all roots whose imaginary
part is not 0 or p come from exact complete 2 strings.

In Table 5 we give examples of multiplets with Sz=3, 1, −1 and

Sz=3, 1, −1, −3.

Fig. 1. Plot of the Bethe’s roots for D=0, Sz=0 as obtained from Baxter’s exact expression

for Q(v). The roots are symmetric both about the real axis and under the reflection vQ−v.
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Table 4. An Example of the Roots of a Degenerate Mul-

tiplet Sz=6, 4, 2, 0, −2, −4, −6 in D=0, L=16 with Highest

Weight Sz=6. We Choose the State with E=−0.5517987.....

The Multiplet Has 26=64 States. In Sz=0 There Are 20

States, the Momentum Is P=2p/16 and the Roots Are

Computed from the Explicit Expression for Q (1.14). In

Sz=2 There Are 15 States, the Momentum Is P=18p/16. All

States Have the Same (1,+) and (1,−) Roots in Addition to

Exact Complete 2 Strings.

Sz=0, P=2p/16

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.994484 +ip/2 −2.006672 +ip/2
−1.994484 −ip/2 −2.006675 −ip/2
−0.354311 +ip/2 −0.409599 +ip/2
−0.354311 −ip/2 −0.409599 −ip/2
1.439155 1.506631 +ip/2
1.439155 +ip 1.506631 −ip/2

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.877737 +ip/2 −1.862425 +ip/2
−1.877737 −ip/2 −1.862425 −ip/2
0.044698 +ip 0.067738

0.044698 0.067738 +ip
0.923398 +ip/2 0.885045

0.923398 −ip/2 0.885045 +ip

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.796958 +ip/2 −1.788035 +ip/2
−1.796958 −ip/2 −1.788035 −ip/2
−0.415405 +ip −0.409732

−0.415405 −0.409732 +ip
1.302723 +ip/2 1.288127

1.302723 −ip/2 1.288127 +ip

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.852568 +ip −1.847467

−1.852568 −1.847467 +ip
−0.538335 +ip/2 −0.482661 +ip/2
−0.538335 −ip/2 −0.482661 −ip/2
1.481262 +ip/2 1.420488

1.481262 −ip/2 1.420488 +ip
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Table 4. (Continued)

Sz=0, P=2p/16

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.765722 −1.768190

−1.765722 +ip −1.768190 +ip
−0.421083 −0.426754

−0.421083 +ip −0.426754 +ip
1.277164 1.285303 +ip/2
1.277165 +ip 1.285303 −ip/2

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.793415 −1.799117

−1.793415 +ip −1.799117 +ip
0.067785 0.040394

0.067785 +ip 0.040394 +ip
0.815989 0.849081 +ip/2
0.815989 +ip 0.849081 −ip/2

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.342393 +ip/2 −1.307213 +ip/2
−1.342393 −ip/2 −1.307213 −ip/2
−0.964462 −0.960063

−0.964462 +ip −0.960063 +ip
1.397214 +ip/2 1.357636

1.397214 −ip/2 1.357636 +ip

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−1.122273 +0.163271i −1.137586 +0.146097i
−1.122273 −2.978321i −1.137586 −2.995495i
−1.122273 −0.163271i −1.137586 −0.146097i
−1.122273 +2.978321i −1.137586 +2.995495i
1.334906 1.365531 +ip/2
1.334906 +ip 1.365531 −ip/2

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−0.384740 −0.152129 +ip/2
−0.384740 −ip −0.152129 −ip/2
−0.262449 −2.561390i −0.378755 −2.967736i
−0.262449 −0.580202i −0.378755 −0.173856i
−0.262449 +2.561390i −0.378755 +2.967736i
−0.262449 +0.580202i −0.378755 +0.173856i

Bethe’s Equation and the XXZ Model at Roots of Unity 661



Table 4. (Continued)

Sz=0, P=2p/16

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

0.626402 0.626402

1.192878 +ip 1.192878 +ip
−0.805653 −0.857340

−0.805653 +ip −0.857340 +ip
−0.051993 −2.957473i 0.000361

−0.051993 +0.184119i 0.000361 +ip
−0.051993 +2.957473i −0.052661 +ip/2
−0.051993 −0.184119i −0.052661 −ip/2

Sz=2, P=18p/16

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

0.626343 0.626355

1.192856 +ip 1.192850 +ip
−0.458130 +ip/2 −0.447383 +2.958193i
−0.458130 −ip/2 −0.447383 −2.958193i
−0.419474 −0.447366 −0.183219i
−0.419450 +ip −0.447366 +0.183219i

0.626329 0.626368

1.192864 +ip 1.192846 +ip
0.046111 +ip/2 0.004442

0.046111 −ip/2 0.004435 +ip
−0.954798 −0.909222

−0.954712 +ip −0.909190 +ip

0.626364

1.192848 +ip
0.028744

0.028697 +ip
−0.883297 +ip/2
−0.883297 −ip/2

0.626287 0.626279

1.192971 +ip 1.192969 +ip
−1.066835 +ip/2 −0.937278

−1.066835 −ip/2 −0.937214 +ip
1.983971 1.981627

1.984254 +ip 1.981907 +ip
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Table 4. (Continued)

Sz=2, P=18p/16

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

0.626286

1.192966 +ip
−0.375322

−0.375280 +ip
1.978775

1.979051 +ip

0.626307

1.192960 +ip
0.080561

0.080711 +ip
1.972039

1.972307 +ip

0.626323

1.192867 +ip
0.198855 +ip/2
0.198855 −ip/2

−2.040445

−2.040077 +ip

0.626277

1.192970 +ip
1.982814

1.983095 +ip
−2.037150

−2.036788 +ip

0.626349

1.192853 +ip
−0.462058

−0.461966 +ip
−2.023406

−2.023066 +ip

0.626367

1.192847 +ip
0.017464

0.017436 +ip
−2.032311

−2.031957 +ip
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Table 4. (Continued)

Sz=2, P=18p/16

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

0.626319

1.192870 +ip
0.304376 +ip/2
0.304376 −ip/2

−1.151308 +ip/2
−1.151308 −ip/2

0.626344

1.192855 +ip
−1.061563

−1.061281 +ip
−1.970389

−1.970124 +ip

With the data from Fig. 1 we may now examine in much greater detail

the meaning of the term ‘‘Bethe’s ansatz equation’’ which is commonly

used to refer to Eq. (1.2). Consider first directly setting c=p/2 in (1.2). We
see that (1.2) reduces to

1
sinh

1
2 1vj+

pi
2 2

sinh
1
2 1vj−

pi
2 22

L

=(−1)L/2−|Sz|−1 (3.1)

and thus

sinh
1
2 1vj+

pi
2 2

sinh
1
2 1vj−

pi
2 2

=3
e2pim/L if

L
2

−|Sz| — 1(mod 2)

e2pi(m+1/2)/L if
L
2

−|Sz| — 0(mod 2)

(3.2)

and from (1.6)

pm=3
2pim

L
if

L
2

−|Sz| — 1(mod 2)

2pi
L

(m+1/2) if
L
2

−|Sz| — 0(mod 2)

(3.3)
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Table 5a. An Example of a Multiplet for D=0

and L=16 with Sz=3, 1, −1

E=−7.875...

Sz=3, P=2p/16

0.881310
0.403173

0.0
−0.403166
−1.614741

Sz=1, P=18p/16

0.881326 0.881384
0.403174 0.403901

0.0 0.0
−0.403184 −0.403208
−1.614809 −1.614809
0.366737 +ip/2 0.366743
0.366737 −ip/2 0.366038 +ip

Sz=−1, P=2p/16

0.881310
0.403173

0.0
−0.403166
−1.614741

.

−.

Table 5b. An Example of a Multiplet for D=0

and L=16 with Sz=3, 1, −1, −3

E=−5.875...

Sz= ± 3, P=2p/16

1.614739
0.881307
0.403186

−0.403383
.

Sz= ± 1, P=18p/16

1.614739 1.614736 1.614735
0.881307 0.881300 0.881298
0.403186 0.403168 0.403164

−0.403383 −0.403156 −0.403175
. . .

−0.258692 −1.260395 −1.323623 +ip/2
−0.258590 +ip −1.260335 +ip −1.323623 −ip/2
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with m=0, 1, ..., L−1. The solutions to (3.2) all satisfy

Ivj=0, or p (3.4)

which obviously is in gross contradiction to the example of Table 2 and

with the large mass of data summarized in Fig. 1. On the other hand the

roots of (3.1) are precisely the roots of the string ansatz of ref. 21 and agree

exactly with the computation of Lieb, Schultz and Mattis. (47)

This disagreement between the solution of Bethe’s equation (1.2) for D

taken continuously to zero and the solutions of (3.1) was noted in ref. 20

where the equation (3.1) is referred to as Bethe’s equation and with this

terminology the authors are able to say that Bethe’s equation is complete at

D=0 but that there is a discontinuity at D=0. However, as we emphasized
in Section 1 the Bethe’s equation (1.2) is only derivable under the assump-

tion that the simultaneous vanishing (1.13) does not occur. It seems to us

more appropriate to preserve the condition (1.13) whenever we refer to

(1.2) as the ‘‘Bethe’s equation.’’ Since the equation (3.1) holds even for the

cases where the simultaneous vanishing (1.13) occurs we would prefer to

call it the Lieb–Schultz–Mattis equation after its original discoverers. With

this terminology we reserve the name ‘‘Bethe’s equation’’ at roots of unity

as the equation satisfied by the roots obtained by continuity as DQ0 for
Sz ] 0 and by the roots of Q(v) of (1.14) at D exactly zero for Sz=0. With
this terminology Bethe’s equation will be continuous at D=0 by definition;
however the explicit form of the equation when there are exact complete 2

strings in the state is not known. Regardless of terminology it is a fact that

the roots of the eigenvalues of Q(v) given by (1.14) are not all given by (3.1).

B. D=−1/2 (c=p/3)

If this lack of continuity happened only at D=0 it would perhaps only
be of semantic interest whether or not we call (1.2) without the condition

(1.13) by the name of Bethe’s equation. But the phenomenon which we just

saw at D=0 happens for all D obtained from the root of unity condition

(1.8). To make this specific we here explicitly consider the case D=−1/2.
The root contents of the highest weight state of each multiplet are now

made up of (1,+), (2,+) and (1, −) strings. In Table 6 we give the root
content of the ground state for D= ± 1/2 which contains only (1,+) roots
and the excited state (in P=4p/16) which contains a single (2,+) string. In
Table 7 we list the exact complete 3 string and infinite root content of all

multiplets. In Table 8 we give several examples of multiplets with one exact

complete 3 string and in Table 9 we give an example of a multiplet with

Sz=6, 3, 0, −3, −6. In Table 10 we give examples of multiplets with

Sz=5, 2, −1, −4, Sz=5, 2, −1 and Sz=4, 1, −2.
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Table 6. The Root Content and the Ground State and the State with

One (2,+) String for D=±1/2 for L=16 Computed from Q(v)

D=−1/2 (c=p/3)

P=0 P=4p/16
E=−12.08552 · · · E=−10.137668 · · ·

−1.563663 −1.225672 −1.048691i
−0.798288 −1.225672 +1.048691i
−0.419617 −0.401731
−0.132015 −0.117889
0.132015 0.144763

0.418617 0.431224

0.798288 0.812236

1.563663 1.582741

D=+1/2 (c=2p/3)

P=0 P=4p/16
E=−8.8272 · · · E=−7.8380 · · ·

−3.020233 −2.986276
−1.583084 −1.546300
−0.833007 −0.789520
−0.262945 −0.205871
0.262945 0.349177

0.833007 0.996326

1.583084 2.091232 +2.083219i
3.020233 2.091232 −2.083219i

Table 7. Types of Degeneracies of the Transfer Matrix T(u)

and the Hamiltonian for D=−1/2 (c=p/3) and L=16

Maximum Sz=8, one type
Sz=8 multiplicity=1

5 4 one 3 string

2 6 two 3 strings

−1 4 one 3 string, 4 infinite roots

−4 1 four infinite roots

Maximum Sz=7, one type
Sz=7 multiplicity=1

4 4 one 3 string

1 6 two 3 strings

−2 4 one 3 string, two infinite roots

−5 1 two infinite roots
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Table 7. (Continued)

Maximum Sz=6, one type
Sz=6 multiplicity=1

3 4 one 3 string

0 6 two 3 strings

−3 4 one 3 string

−6 1

Maximum Sz=5, two types
Type 1

Sz=5 multiplicity=1

2 2 one 3 string

−1 1 four infinite roots

Type 2

Sz=5 multiplicity=1 one infinite root

2 3 one infinite root, one 3 string

−1 3 two infinite roots, one 3 string

−4 1 two infinite roots

Maximum Sz=4, one type
Sz=4 multiplicity=1

1 2 one 3 string

−2 1 two infinite roots

Maximum Sz=3, one type
Sz=3 multiplicity=1

0 2 one 3 string

−3 1

Maximum Sz=2, two types
Type 1

Sz=2 multiplicity=1 (nondegenerate)

Type 2

Sz=2 multiplicity=1 one infinite root

−1 1 two infinite roots

Maximum Sz=1, one type
Sz=1 multiplicity=1 (nondegenerate)

Maximum Sz=0, one type
Sz=0 multiplicity=1 (nondegenerate)
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Table 8. Examples of States with One Exact Complete 3 String for D=−1/2 (c=p/3)

E=−8.3926 · · ·

Sz=0, P=2p/16

Sz=3, P=2p/16 ; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

0.562469 0.563138 0.563138

0.263924 0.264228 0.264228

0.007100 0.007099 0.007099

−0.248840 −0.249147 −0.249147
−0.959569 −0.960808 −0.960808

0.125163 0.125163 +ip
0.125163 +i2p/3 0.125163 +ip/3
0.125163 −i2p/3 0.125163 −ip/3

E=−3.1921 · · ·

Sz=0, P=2p/16

Sz=3, P=2p/16 ; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

1.795639 1.798356 1.798356

0.570485 0.571105 0.571105

0.288133 0.288419 0.288419

−0.434281 −0.434765 −0.434765
−0.517966 +ip −0.518450 +ip −0.518450 +ip

−0.568222 +ip −0.568222
−0.568222 +ip/3 −0.568222 +i2p/3
−0.568222 −ip/3 −0.568222 −i2p/3

E=−2.6958 · · ·

Sz=0, P=2p/16

Sz=3, P=2p/16 ; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

1.760626 1.763480 1.763480

0.528642 0.529315 0.529315

0.238033 0.238347 0.238347

−0.481042 +ip/3 −0.481597 +ip/3 −0.481597 +ip/3
−0.481042 −ip/3 −0.481597 −ip/3 −0.481597 −ip/3

−0.522649 −0.522649 +ip
−0.522649 +i2p/3 −0.522649 +ip/3
−0.522649 −i2p/3 −0.522649 −ip/3
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Table 9. A Multiplet in P=2p/16 with Sz=6, 3, 0, −3, −6

for L = 16 and D=−1/2 (c=p/3). The Roots for Sz=6 and 3

Are Taken for D=−0.501. The Roots for Sz=0 Are Obtained

from Q(v) of (1.14) at Exactly D=−1/2. The Root Content

of the Highest Weight Is (1+), (1−). The Energy is

E=3.7394 · · ·

Sz= ± 6

1.957258

−2.540234 +ip

Sz= ± 3

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

1.958725 1.958567

−2.536625 +ip −2.536538 +ip
0.051352 +ip 0.058681 +i2p/3
0.051227 +ip/3 0.058681 −i2p/3
0.051227 −ip/3 0.058681

1.958683

−2.536888 +ip
−0.898706 +ip
−0.894563 +ip/3
−0.894563 −ip/3

1.959915

−2.536608 +ip
1.171936 +ip
1.165390 +ip/3
1.165390 −ip/3

Sz=0

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

1.961385 1.961385

−2.532983 +ip −2.532983 +ip
−0.714134 +ip/3 −0.705970 +p/3
−0.714134 −ip/3 −0.705970 −ıp/3
−0.714134 +ip −0.705970 +ip
0.904667 0.896503 +ip/3
0.904667 +i2p/3 0.896503 −ip/3
0.904667 −i2p/3 0.896503 +ip
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Table 9. (Continued)

Sz=0

; Ivj — 0 (mod 2p) ; Ivj — p (mod 2p)

1.961385 1.961385

−2.532983 +ip −2.532983 +ip
−0.718967 −0.742981
−0.718967 +i2p/3 −0.742981 +i2p/3
−0.718967 −i2p/3 −0.742981 −i2p/3
0.909499 +ip/3 0.933514

0.909499 −ip/3 0.933514 +i2p/3
0.909499 +ip 0.933514 −i2p/3

1.961385 1.961385

−2.532983 +ip −2.532983
0.067492 +ip/3 0.095266 +0.757222i
0.067492 −ip/3 0.095266 −0.757222i
0.067492 +ip 0.095266 +1.337172i
0.123040 +i2p/3 0.095266 −1.337172i
0.123040 −i2p/3 0.095266 +2.851671i
0.123040 0.095266 −2.851617i

Fig. 2. Plot of the Bethe’s roots for D=−1/2, Sz=0 as obtained from Baxter’s exact

expression for Q(v). The roots are symmetric both about the real axis and under the reflection
vQ−v.
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Table 10. Examples of Multiplets with Sz
max=5 and 4 with L=16 and D=−1/2. The

Roots Listed Are Taken from the Data for D=−0.501 and We Indicate by ±. Roots

Which Give Contributions to the Total Momentum of ±2p/3 in the Limit DQ−1/2.

We Give the Other Roots to 6 Places but Note that Some of the Values Can Differ

from Their Values at D=−1/2 by as Much as 0.07

a. An example of the multiplet with Sz=5, 2, −1, −4

E=4.057 · · · , P=2p/16

Sz=5

−1.391351
−0.304001 +ip

−.

Sz=2

−1.392407 −1.391696 −1.391722
−0.305603 +ip −0.302916 +ip −0.302748 +ip

−. −. −.
−0.979344 +ip/3 0.795702 +i2p/3 0.793797 +ip/3
−0.979344 −ip/3 0.795702 −i2p/3 0.793797 −ip/3
−0.984361 +ip 0.795701 0.794323 +ip

Sz=−1

−1.392093 −1.391968 −1.392068
−0.309847 +ip −0.303059 +ip −0.301622 +ip

. . .

. . .

−0.423815 +ip/3 −0.428616 +i2p/3 0.996443 +ip/3

−0.423815 −ip/3 −0.428616 −i2p/3 0.996443 −ip/3
−0.417366 +ip −0.428616 1.000841 +ip

Sz=−4

−1.391504
−0.302815 +ip

.

.
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b. An example of the multiplet with Sz=5, 2, −1

E=−4.167 · · · , P=2p/16

Sz=5

0.251789
0.005266

−0.519473

Sz=2

0.251853 0.251846
0.005442 0.005500

−0.519607 −0.519683
0.069044 +i2p/3 0.069117 +ip/3
0.069044 −i2p/3 0.069117 −ip/3
0.069101 0.06898 +ip

Sz=−1

0.251816
0.005524

−0.519555
.

.

−.
−.

c. An example of the multiplet with Sz=4, 1, −2

E=−5.478 · · · , P=2p/16

Sz=4

0.721217
0.128539

−0.380667
−0.706916

Sz=1

0.721400 0.721478
0.128630 0.128548

−0.380765 −0.380829
−0.707118 −0.707220
0.072111 0.072073 +ip
0.072175 +i2p/3 0.072279 +ip/3
0.072175 −i2p/3 0.072279 −ip/3

Sz=−2

0.721274
0.128544

−0.380688
−0.706974

.

−.
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In Fig. 2 we plot the position of the roots of all eigenvalues of Q(v) in
the sector Sz=0. We note as for D=0 that the values of the imaginary

parts which are not 0, ±p/3 or p are all for roots of exact complete 3

strings.

IV. COMPLETENESS, INCOMPLETENESS AND EVALUATION

PARAMETERS

As done above for D=0 it is always possible to make the statement

that Bethe’s equation is complete in the degenerate cases if we can start

from a completeness in the case where the parameter D is generic and then

define the term ‘‘Bethe’s equation’’ at the root of unity case by continuity.

This, of course, has the serious disadvantage that at roots of unity most of

the ‘‘Bethe’s equations’’ are not yet known.

On the other hand if we define Bethe’s equation to be (1.2) with the

restriction (1.13) even at roots of unity (1.8) then the examples given above

for D=−1/2 demonstrate that Bethe’s equation by itself is not complete.
Instead with this definition Bethe’s equation is complete for the highest

weight of the multiplet and the remaining states must be obtained by

applying appropriate lowering operators to this state of highest Sz.

To be more precise we turn to the theory of finite dimensional repre-

sentations of (quantum) affine Lie algebras (48–50) where the states of a

degenerate multiplet are specified by tensor products of evaluation repre-

sentations. To determine the evaluation parameters of these representations

(in the sector Sz — 0 (mod N)) we use the two Chevalley generators of the
sl2 loop algebra T+(N) and S−(N) defined in ref. 37 to define the numbers mr
from

T+(N)r

r!
S−(N)r

r!
W=mrW (4.1)

where W is the vector in the multiplet with the maximum value of Sz. From

these mr we form the Drinfeld polynomial

P(x)=C
r \ 0
mr(−x) r (4.2)

Then the evaluation parameters aj are given as

P(x)=D
j

(1−ajx) (4.3)
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As a specific example Jimbo (private communication) has shown for a

chain with L — 0 (mod N) with N odd and q=epi/N that for the multiplet
whose highest weight state is the vector with all spins up we have

mr=
L!

(rN)! (L−rN)!
(4.4)

and thus the corresponding Drinfeld polynomial is

P(x)=
1
N

C
N−1

k=0
(1−e2pk/Nx1/N)L (4.5)

For a complete solution to the problem we need an efficient method of

computing the evaluation parameters and an explicit construction of the

eigenvectors of T(v) in terms of these evaluations parameters. Both of these
problems are open at the present.

Moreover the relation of the evaluation representation to the exact

complete N strings is not known. We do know empirically for the mul-

tiplets Sz=N, 0, −N (which have two states in Sz=0 and are specified by
two evaluation parameters a1, a2) that the real parts of the complete exact

N strings of both the states in Sz=0 are equal and are given by

a=
1

2N
ln a1a2 (4.6)

We also know for the multiplet Sz=2N, N, 0, −N, −2N that if we consi-

der the states in Sz=0 with two complete exact N strings which have the

same real part then this real part is given in terms of the four evaluation

parameters as

a=
1

4N
lna1a2a3a4 (4.7)

But for D=0 it was possible to go further and produce the alternative
equation (3.1) and this equation is well defined even for solutions where the

simultaneous vanishing (1.13) occurs. This equation did not give the roots

of Q(v) but did correctly give all eigenvalues and eigenvectors of the

Hamiltonian. It can also be determined that all evaluation parameters are

of the form

aj=cot2
1
2 1pj+

p

22 (4.8)

where pj is given by (3.3).
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It is thus natural to ask if a similar procedure can be done for other

values of D. This seems to be the approach to completeness taken in ref. 17

where a string ansatz is made for the solutions of (1.2) whenever the equa-

tion is well defined and then (tacitly) applied for the cases where the

vanishing condition (1.13) holds and the equations is not defined. This

procedure gave the correct counting but because no equation comparable

to (3.1) is given there it is not possible to construct the corresponding

degenerate states in the multiplet. Furthermore the relation which this

procedure has to the evaluation representation of the sl2 loop algebra

symmetry is not known.
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